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Abstract. The development of a model considered earlier, which deals with the melting of 
microinclusions in an elastic matrix. is proposed. Apart from perfed inclusions totally filling 
the appropriate cavities. inclusions with one atomic vacancy in the solid state are also 
described. The consideration is based on the exactly soluble model of a p h a e  transition that 
describes two-level systems connected to a medium by a ferroelastic interaction. Some 
principally new types of phase diagrams with critical points where the lines of first-order 
phase transitions terminate are discussed. Peculiar regions of the model parameters are 
pointed out. As anticipated. the present results are applicahle to a rather wide class of 
materials composed of several sets ofdistinct two-level systems. 

1. Introduction 

In the last few years, composites have been the subject of intense interest owing to the 
synthesis of different modern artificial compounds. In particular. zeolite matrices, in 
which there are regularly distributed cavities filled with some distinct material, can be 
regarded as important representatives of the discussed materials 111. Melting is one 
instructive physical phenomenon in these compounds. A specific character of melting 
occurs in the case when every separate inclusion is sufficiently small that the coexistence 
of different phases is impossible within one, though such an inclusion consists of several 
atoms. A significantly richer picture of the corresponding thermodynamic behaviour is 
anticipated ifsomeadditionalpremelting statesofthe inclusionsexist [2, 31. In thiscase, 
apartfrom the prediction that thesinglelineof transition terminates 
at the critical point, the splitting of that line leading to the appearance of an intermediate 
phase can be expected. 

In the present paper another natural situation for the discussed system of micro- 
inclusions has beenstudied. Here we deal with the possibilityoftheexistence ofdefective 
inclusions composed of a smaller number of atoms. All the cavitiescontaining inclusions 
are assumed to be identical here. For definiteness, throughout this paper we restrict 
ourselvestoasystemofsphericalcavities,everyoneofwhichmaycontaineight spherical 
atoms packed in a cubic configuration. In this case a defective inclusion consists of seven 
atoms that are packed in the same manner, i.e. the seven atoms are distributed over the 
eight positions of the perfect configuration. Such ordered states of the inclusions are 
naturally treated in the same way as their solid states. The unoccupied atomic position 
ina solid defective inclusioncan then beregarded asavacancy. The overallconcentration 
ofsuchvacanciesinaspecimenisassumedto be fixed. Webelieve thatsucharequirement 
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corresponds to the experimental situation and isdetermined by the conditionsgoverning 
the synthesis of an appropriate sample. 

According to [ 2 ,  31, the process of melting is associated with the transition of an 
inclusion to a state of high mobility, which is characterized by some atomic configuration 
with alarger number of unoccupied effective atomicpositions. For example.suchastate 
canbeachieved bythe transitionofoneatombelongingtoagiveninclusiontothecentral 
position in the corresponding cavity [2,3]. Then the other atoms fill the volume of the 
spherical layer between the central atom and the boundary of the cavity, provided that 
there is an appropriate decrease in the atomic sizes. The fact that the total number of 
atoms persists within every cavity naturally leads to a significantly larger amount of 
empty volume per atom in a cavity after such a transformation. As a result, high atomic 
mobility is typical there. Moreover, now inclusions are described by different total 
energies and by different degrees of degeneracy of both the solid and liquid states 
depending on the presence of vacancies. 

It seems to be important that the introduced system can be regarded as a new type 
of composite solid solution, namely a solution of inclusions embedded in an elastic 
host matrix. The present paper is devoted to the investigation of the thermodynamic 
peculiarities of such a solution. 

2. States of a single inclusion 

Accordingto[3]. the solidstate o fa  perfect inclusion inserted intoasphericalcavityofan 
elastic matrix is represented asa cubiccluster ofeight atoms. An important assumption in 
whatfollowsisthatalltlieatomsofsuchaclusterareinintimatecontact withoneanother 
and with the surface of the cavity, so that there is transmission of possible inner stresses 
to the outer medium and vice versa. 

As far as both the shape and size of the involved clusters are concerned, they agree 
with the experimentsof [l]. In particular, the experimental number of atomic positions 
is equal to m, = 8 and corresponds to the number of atoms in a perfect inclusion. 

The liquid state is in turn described by a configuration of the atomic positions such 
that one atom is located at the centre of the cavity and the Qther atoms are distributed 
at random around the central one. provided that all the constituent atoms are deformed 
identically. This variant of the atomic rearrangement is akin to the idea of transferring 
atoms to interstices. The essential distinction from the latter in its classical form consists 
of the fact that the entire rearrangement is accompanied by changing the environment, 
and therefore itscharacter is local and collectivesimultaneously. Note that the extension 
of this approach to the description of bulk melting 141 gives rise to a new qualitative 
understanding of the melting phenomenon as a whole. 

To calculate the total number ?nl of admissible atomic positions of the liquid con- 
figuration, we directly make use of the geometric picture shown in figure 1. Then the 
close packing of atoms in the cavity can be obtained as follows. Three atomic positions 
along the vertical axis are assumed to be fixed, whereas the side spherical atoms can 
move independently along two parallel rings whose planes are normal to the above 
vertical axis. If we now consider one of the parallels of latitude at which the centres of 
the side atoms reside, then the length of this parallel divided by the length of the arc of 
the same parallel corresponding to the atom in question (this arc is restricted by the 
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Figure 1. Model configuration of admissible 
atomic positions (small circles) for the liquid state 
in a spherical cavity. The central cross section 
is shown in the upper part. Side positions are 
distributed concentrically around the axis. The 
parallels of latitude on which the centres of those 
atoms reside are shown by broken lines, In the 
lower part the configuration of side atomic posi- 
tions is given on the plane of the above parallel. 
The arc ofthat parallel restricted by the indicated 
angle corresponds to a single atomic position and 
is used for calculatingm,. 

angle shown in the lower part of figure 1) yields the number of positions in each ring. 
On taking account of both the contribution of the two rings and the three fixed positions 
mentioned above, we easily derive ml = 13.2086. 

The atomic configurations introduced above specify both the states of a perfect 
inclusion with number of atoms equal to n = 8 and the states of an inclusion with a 
vacancy, when n = 7. Inasmuch as all the atoms within an inclusion are treated as 
identical, the degree of degeneracy of the solid state is determined by the obvious 
expression 

1 a t n = 8  

at n = 7. 
(1) 

m,! 
n!(m% - n)!  = i, 4.. = 

To obtain the appropriate relationship for the degrees of degeneracy of the liquid states, 
the fact that the central atomic position is always occupied must be taken into account. 
This circumstance leads to some distinction from the model of bulk melting [4], though 
its effect on the final results is not appreciable. An exhaustive count of all the possible 
configurations describing the arrangements of atoms over admissible atomic positions 
gives rise to the formula 

a t n = 8  

at n = 7. 
(2) 

r h )  
q l ~ ~  = (n - I)! r(m, - n + 1) = {i:::::: 

Here the relationship r (m + 1) = mr(m). which holds for the gamma function r(m), is 
used. The large numerical values of qI,, are typical for the present model. 

Inasmuch as every given inclusion is specified by the two states, it is convenient to 
describe it as a two-level system with the help of an Ising variable 11 = 21, where the 
upper and lower signs correspond to the liquid and solid states, respectively. In order to 
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Figure 2. Energy parameters of the Hamiltonian 
H'"'on the diagram of two-level states of the (a) 
perFecl and ( b )  defective inclusions. Both the 
upper (liquid state) and lower (solid stale) levels 
are labelled by filled circles. The lines without a 
label are the midpoints. The chain line at the 
bottom gives the common origin. Broken lines 
show the appropriate shift of the picture due to 
some deformation. 

distinguish the two types of inclusions, we introduce one more Ising variable VI = 21, 
where the uppersigndescribesan inclusion withavacancy whereas the lower sign relates 
toaperfect inclusion. The projectionoperatorson thestateswith and without avacancy 
can be written respectively in the form 

AI $(l - VI) Ai = i(l + I)). 
Then the Hamiltonian of a single inclusion can be represented as follows: 

The meanings of the appropriate energy parameters are specified by the scheme shown 
in figure 2. I n  particular, Eo, are the midpoints between the energy levels of the appro- 
priate two-level systems labelled by j ,  and the corresponding energy gaps between the 
levels are equal to 25,. The terms with U,, in expression (3) describe respectively the 
dependences of E", and Jl on the local change in volume of a cavity. The latter is 
determined as usual by the trace of the local strain tensor ueflof the elastic matrix at the 
location of a given cavity. Here and below summation over repeated tensor indices is 
supposed. 

As far as the values of the energy parameters of formula (3) are concerned, they can 
be associated with the deformation energy of spherical atoms upon their transformation 
to the liquid state. The accuracy of such an approximation is sufficient for the problem 
in question. The entire energy of an inclusion is then treated as the sum of contributions 
of theconstituent atoms. Theenergy of any additional interatomicinteraction isassumed 
tobeasmallcorrection to theaboveenergyofdeformationofthe atomicelectronshells, 
which is huge in comparison with typical excitation energies in solids. Thiscircumstance 
enables us to neglect such additional contributions in what follows. As a result, some 
simple model relations between the parameters of formula (3) can be established: 

J, =4E, 61 = 4kd - gas) J2IJt = g,Igt = 5 (4) 
where E, is the energy of the deformed liquid state of an atom, provided that the energy 
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of the undeformed atom is set equal to zero, and g,, and g, are the stiffness coefficients 
ofan atomin the liquid andsolidstates, respectively, measured inenergyunits. Similarly, 
the connections between Eo, and E,,, and between g,, and g,, can be established within 
the framework of the additional assumption that the energies of the solid states for both 
sorts of inclusions coincide at U, = 0. Then 

E,,, = Ji gni = 4k.1+ gas) = +go,. (5 )  

gal > gas > 0 

It is also natural to suppose that 

inasmuch as an atom in a compressed state isobviously stiffer. Furthermore, an increase 
in the local volume of the matrix leads to the contraction of cavities. 

3. Thermodynamic potential 

Now we consider a system of the above inclusions distributed regularly in an elastic 
matrix, which, for simplicity, is assumed to be isotropic. The appropriate Hamiltonian 
is of the form 

H = H:“ + ($Auk + yuia) dl’. (6) 

Here the summation is carried out over all Ninclusions. The Hamiltonian H p  is given 
by expression (3) with parameters q,, Ai,, and U,&,) specifying the state of the ith 
inclusion. The second term in (6) corresponds to the elastic energy of the matrix in the 
continuum approximation [ 5 ] ,  A and p are the elastic moduli, and integration is carried 
out over the volume Vof the sample at hand. It is convenient in what follows to separate 
the interaction with the strain. According to (4) and (5), it can be written in the form 

where 

ti = M1-5 - q)i)(r + 7 0  (8) 

is the effective order parameter specifying the state of the ith inclusion, and f = gol/gl. 
After detaching interaction (7), the residual part of the Hamiltoniandescribingonly the 
system of inclusions is as follows: 

Hinc = MI (1 + ‘lO(15 - Vi) .  

Within the framework of the present approach, all the inclusions are described 
identically, though the presence of vacancies distinguishes them. In other words, our 
system of inclusions can he treated as a uniform one. As a result, it is natural to describe 
this system in terms of a grand canonical ensemble of inclusions, provided that the 
distribution of vacancies is not fixed. Such a representation is especially convenient at 
the stage of separating the elastic degrees of freedom upon calculating the partition 



5626 E V Kholopou 

function. The appropriate thermodynamic potential is of the form 

8 = -Tln Tr {exp [ -p (. + u x  A2,, + p 1 U,, dV)]} (9) 
i 

where T = l i p  is the temperature measured in energy units,p is the external pressure, 
the trace is taken over both the configurations of the inclusions and the confirurations 
of the elastic degrees of freedom, and U is the chemical potential determining the 
concentration c of defective inclusions. The value of c is easily specified by the condition 

aQ/au = Ne. (10) 
The homogeneity of the overall system, enables us to describe the system in terms 

of Fourier transforms. The appropriate consideration for an interaction similar to (7) is 
proposedin[6] (seealso[3]). Separationoftheregularcontributionofharmonicphonons 
from the thermodynamicpotential is performed with the help of the results of 171. Then 
expression (9) can be converted into the form 

g: 
+ 2P) 

R =  

(13) 

(14) 

J = g i p I K - J ,  +G(E)  (15) 
cPa is the thermodynamic potential of acoustic phonons, U = V / N ,  K = A + 2 ~ 1 3 ,  the 
trace in formula (11) is taken over all the admissible configurations of only the system 
of inclusions, and the value of (a is determined by the condition that Q be a minimum. 
The appearance of additional terms in expression (11) in comparison with formula (11) 
of [6] is associated with the fact that, according to definition (8), we have 

(16) 
Hence, the value of f :  contains both operator terms and purely numerical ones. To 
obtain relationship (16), we have made use of the obvious condition on the king 
variables: 

51 = &(113 - 15Vi)( t2  + 1 + 2tq;). 

q : = 1  v: = 1 

In order to calculate the trace in formula (I l ) ,  we rewrite the corresponding 
expression in the form 

Tr [ exp ( 1  ,8 [ASi - Bq, + (D - iu)~p~])]  = I" (17) 

where 
A = J +  '&U B = Z U  D = &R(r2 - 1) + h(1 - f )J ,  
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and U = tR. Summing over the values of ?l, and vi in formula (17) is performed directly. 
As a result, we obtain 

I = qI7 exp@[B(t + l)A - B + D - lo]} + qr7 exp{@[g(t - l)A + B + D - lo]] 
+ qIs exdb[(t + l)A - B - D + io]} 
+ qss exp@[(t - l)A + B - D + h]).  (18) 

The first two terms on the right-hand side of (18) can be converted to a single term, and 
the last two terms are transformed in the same manner, so that formula (18) is rewritten 
as follows: 

I = 2IQ7 exp[P(D - ldl + QS expI-PP - l ~ ) ] }  

Q7 = (q17qr7)1/2 exp(HPfA) cosh[P(8A - B )  + 1 1n(ql7/qS7)1 

QS = (qt8qd’i2 exp(PtA) coshlP(A - B) + 4 ln(qdqd1. 

(19) 
where 

Carrying out a similar transformation but with respect to the two terms in braces on the 
right-hand side of formula (19). we obtain 

I = 4(Q7Q8)lb cosh[P(D - $U) + t ln(Q7/Qs)1. 

On substituting this expression into formula (17) and inserting the resulting expression 
into relationship (II) ,  we finally derive the thermodynamic potential Q in the form 
Q = Q, + $NO + tNG(5)’ - TNln[4(Q7Qs)‘/‘] 

- TN ln(cosh[fi(D - to) + f In(Q7/Qs)]). 

From formula (10) we then obtain 
c = 1{1 + tanh[p(D - 40) + 1 In(Q7/Qs)]}. 

Thermodynamic potential (20) describes thesystem in termsof thechemical potential 
U. If we are interested in the case of a fixed concentration c ,  then the thermodynamic 
potential @, which is of the form 

@ = Q - NCO (22) 
should be introduced. In formula (22) the value of c- must be expressed in terms of c. 
According to (21). we have 

U = 2 0  - Tln[cQ,/(l - c)Q7]. (23) 
On inserting expression (20) into formula (22) and making use of expression (23) for U ,  

the thermodynamic potential @ can be represented in the form 
+&NG(g)’ -Nt(l -Qc)GQ)- TN[cln(coshY) +(1 -c)ln(coshZ)] (24) 

where 
Q0 = Qo + ND(1 - ZC) - Nt(1 - Qc)(g,p/K- J , )  + TN{~In[c(q,,q,~)-’~’] 

y = ;P(J + Brr) + 1 In(qldqd 
z = P(J  + U) + t wql.S/qas). 

(25) 
+ (1 - c)  In[(l - c)(q18qis)-’1211 
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Note that expressions (24) and (25) may be derived by immediate calculation of the 
partition function in formula (11) at fixed c, though the present approach seems to be 
somewhat more consistent. The meanvalue of ( E )  isspecified asa self-consistent solution 
of the equation 

(e) = (1 - bc) + He tanh Y + (1 - c) tanh 2 (26) 
which is a direct consequence of the condition that the potential Q in form (24) be a 
minimum with respect to ( E ) .  Relationships (24)-(26) yield the total description of 
the thermodynamics of the system in question at a given concentration of defective 
inclusions. 

4. Analysis of the self-consistent solution 

It is useful to rewrite equation (26) in the form 

q z  - 2,) - p = (1 - c)z + :cy (27) 
where 

P = g l p l K + f ( l - Q c ) + ( U - J , ) / G  

z = tanh Z 

Y = $ Z -  w -  &BO zo = i W d q d  (28) 

w = 1 ~n[(q,,/~1~)(9~"/q~~)'181 

y = tanh Y 

T =  i/p = T/G = U/G. 
According to (1) and ( Z ) ,  we have W = 0.5520 and Zo = 3.4217. Equation (27).  con- 
taining a linear function of 2 on the left-hand side, is a modification of the classical 
matching condition on the order parameter in molecular-field theory [6 ,8 ] .  The terms 
with z and y on the right-hand side of equation (27) can be connected with the change 
in state of perfect and defective inclusions, respectively. So, the right-hand side of (27) 
as a function of 2 is roughly speaking a step function with either one step or two steps 
depending on the value of Y.  In the latter case the part between the steps is responsible 
for the intermediate phase, in which both the molten states of perfect inclusions and the 
solid states of inclusions with a vacancy are predominant. Note that inasmuch as W > 0 
and the condition U > 0 seems to be plausible in the adopted model, the other type 
of intermediate state corresponding to the combination of the solid states of perfect 
inclusions and the liquid states of defective ones is forbidden. This statement follows 
immediately from the fact that, according to (28). a point of inflection ofy as a function 
of 2 occurs at 2 > 0. 

If there are several solutions of equation (27) simultaneously, then the stable one 
apparently corresponds to the minimum value of thermodynamic potential (24). The 
condition that the straight line representing the linear function on the left-hand side of 
equation(27)isatangent to thecurvedescribingtheright-handsideofthesameequation 
is responsible for the appearance of a new solution and is of the form 

T =  (1 - c)(l - z') + (Q)ZC(I - yZ). (29) 
Thus, the joint solution of equations (27) and (29) specifies spinodals, i.e. boundaries 
of absolute instability of metastable phases on the phase diagram. 
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c 
0.2 0.4 0~6 0.8 1, 

c 

Figure 3. Parameters Tc and pe of critical points versus the concentration c of defective 
inclusions at 0 = 3. The correspondence between T. curves and .De curves is obvious. The 
broken curves represent the case of U = 0 for comparison. 

The points of inflection of the expression on the right-hand side of equation (27) as 
a function of Z are responsible for the singularities of the solution and are in turn 
determined by the relationship 

(1 - C ) ( Z  - z3) = - ( 6 ) 3 ~ ( y  - y 3 ) .  (30) 
The joint solution of equations (27), (29) and (30) describes the critical points, at which 
spinodals converge and steady-state phase transition lines may terminate on the phase 
diagram. Such singularities are typical for the discussed model of isomorphic phase 
transitions [6]. 

The topology of curves describing the behaviour of the coordinates fc and p c  of 
critical points as functions of the concentration c depends essentially on the value of U, 
as shown in figures 3-5. So, if U = 0, the solution for fc, as well as forpc is described by 
a single monotonic curve. Significant bending of this curve arises upon enhancing U. 
Furthermore, another curve appears in the range of small Tc, when U becomes non- 
zero. The cusps are typically singular points for that curve (figure 3). These cusps move 
towards the area of bending of the other curve upon increasing U. 

In the process of increasing the value of U ,  the point of maximal bending of the initial 
curve transforms to the vertex of an angle. This event happens when the points of the 
maximum for both sides of equation (30) coincide at 

z = - y  = ( 3 ) 4 / * .  

The appropriate values of the parameters are described by the row with m = 1 in table 
1. At larger values of 0, the vertex of an angle transforms to the point of intersection of 
two independent curves terminating at new cusps linked by some additional curve, as 
shown in figure 4. In general, all the cusps at hand are determined by the condition that 



5630 E V Kholopov 

i 7.0 1 

r C 

Figure 4. Dependences of and p, on the concentration c at l? = 4. 

the curves representing both sides of equation (30) as functions of 2 are tangent to one 
another. This condition can be written as folIows: 

(1 - C)(l - 4z2 + 3z4) = -(;)'C(l - 4y* + 3y4). (31) 

Each cusp of one curve moves towards the appropriate cusp of the other one in the 
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Table 1. Parameters of the singular points labelled by number m. at which the topology of 
the diagram of critical points changes. 

m U C re P. 

1 3.5768 0.5988 0.5731 -1.5127 
2 4.0015 0.5515 0.5077 -1.3336 
3 4.0702 0.6566 0.4487 -1.0086 
4 4.3986 0.5592 0.3813 -0.8995 

process of increasing i! The confluence of each of the above pair of cusps, which leads 
to their annihilation, corresponds to the vanishing of the discriminant of equation (31) 
regarded as a biquadratic equation with respect to either y or z. The parameters of the 
corresponding points are given by the rows with m = 2 and m = 3 in table 1. The 
annihilation of the cusps is accompanied by the splitting of the appropriate curves. As a 
result, a loop is formed, as shown in figure 5. 

Further increase in the value of Ugives rise to some deformation of the intersecting 
curves without any essential change in their mutual arrangement. As far as the loop is 
concerned, its size reduces down to zero, so that there is a point at which the Ioop 
collapses. To determine the parameters of the latter point, the following derivative 
should be considered: 

Expression (32) isobtainedasaresult ofdifferentiatingequation (29). with formula(30) 
taken into account. If both the numerator and denominator of the expression on the 
right-hand side of equation (32) are equal to zero, then the value of that derivative is 
indefinite. But thisis just thecasecorrespondingto thepoint of interest.Theappropriate 
parameters are described by m = 4 in table 1. 

As far as the choice of the thermodynamic variables of the phase diagram is 
concerned, the definition of the introduced parameterp includes a regular term depen- 
dent on c. This simplifies the above analysis, but the topology of the dependences 
discussed here is not changed radically. 

Typical patterns of the phase diagram on the ( p ,  5 plane at a fixed concentration 
are plotted in figure 6 .  The characteristic distinction of the critical points that are 
regarded as being supplementary ones, which are described either by the curves linking 
the cusps or by the loop, follows from the figure. Indeed, only the spinodals converge 
and terminate at these critical points as shown in figure 6(a).  In this case there are also 
three phase transition lines connected with the intermediate phase. Two of them are in 
the region of metastability adjoining 1 = 0 and the third line terminates at the critical 
point depicted at the bottom of the inset. However, all these lines are interrupted by the 
spinodals and do  not arrive at the critical points in question. The behaviour of the 
supplementary critical points is determined by the singularities of the curves in figures 
3-5. In particular, the vertical slope of thesecurvesspecifies the confluence of the critical 
points in question, so that the topology of spinodals changes to the form shown in figure 
6 ( b ) .  On theotherhand, ifwedeal with thecasesgiveninfigures3and4, themultivalued 
character of the solution for the spinodals shown in the inset of figure 6(a) is lost at the 
cusps mentioned above. 
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I I I 
0 0.2 0.4 0.6 0 0.2 0.4 0.6 

t i 
Figure 6. Phase diagrams on the pressure-temperature plane at c = 0.5 for either (a) 0 = 
4.3 or ( b )  U = 6. The heavy curves are steadystate phase transitions. the thin curves are 
spinodals. The region of many-valued solutions near the lower spinodal (a) is shown in the 
inset. Here thesingle heavycurveat the topdescribesthesteady-state phase transition.and 
the arrow points out the critical point at which the line of equilibrium between the two 
metastable phases terminates. The triple p i n 1  at T, = 0.2770,p, = -0.5197 is a peculiarity 
of diagram ( b ) .  The lines restIicting the intermediate phase as a stable one converge at this 
point from the side of larger T. 

Another important consequence is associated with the fact that in general one of the 
two critical points at which the lines of the steady-state phase transitions terminate 
occurs at a lower temperature. As a result, this critical point may be easily observable 
in the region of stability (figure 6(b)) or it lies in the region of metastability as shown in 
figure 6(a). The motion of this critical point towards the region of stability happens on 
enhancing 0. It is essential that the triple point arises on the phase diagram when the 
critical point in question becomes stable. At the triple point three phase transition lines 
separating all three admissible phases of the system converge. Upon further increasing 
U ,  the position of the triple point goes towards zero temperature. At the moment when 
the triple point arrives at zero temperature, the total splitting of the phase transition 
lines separating the intermediate phase appears. The region of the parameters Oand c 
where the triple points exist is drawn in figure 7. The point of singularity cI,  which is 
essential there, is described by the parameters with m = 1 in table 1. 

The value c, is the boundary concentration between the regions of predominant 
influence of either perfect inclusions or defective ones. Both the examples in figure 6 
elucidate the case of c < cP In the event of c > c1, the form of the phase diagram on the 
@, f) plane changes in such a way that the stable critical point at a lower temperature 
lies below the steady-state line of the other phase transition, whereas the metastable 
positions of this point are located above that line. 

In general, we see that in the region of small U, where there is no triple point. the 
phase transition of melting in the adopted system of the two types of inclusions happens 
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0- 
0.2 0.L 0.6 0.8 

c 

0.8 I 

1IW 

Figure 7. Regions of the (U,  c) plane where the 
different types of phase diagrams exist. There is a 
triple point in the hatched area. In the lower part 
there is a single line of the steady-state phase 
transition between the totally liquid and solid 
phases. At the top of the diagram there are two 
independent linesrestricting the regionofstability 
of the intermediate phase. 

Figures. Hatchedareagivesthe regionofstability 
ofthe intermediate phaseat U = Oifthevariation 
ofthevalueof Wisadmissible. The brokencurves 
restrict the regionof existence of the intermediate 
phase. 

to be eutectic. In the case of a triple point the eutectic region occurs at temperatures 
below the temperature of that triple point. Finally, if 

0 2 8 - c  

then the eutectic region is absent. 
For the sake of completeness of our analysis of the possibilities that originate from 

equation (27), we also point out the typical changes of the phase diagram as a function 
of W at 0 = 0, though this situation, strictly speaking, lies beyond the scope of the 
concrete model representation of local melting proposed in the present paper. At this 
stage of the discussion it is in order to point out that W has a purely statistical nature in 
conflict with owhose nature is dynamic. The appearance of the two-step character of 
the expression on the right-hand side of equation (27) as a function of Z is possible upon 
increasing W as well. In this case the second critical point is certainly created on a 
spinodal, i.e. in the region of metastability in accordance with the above results. Upon 
further enhancing W ,  the new critical point also goes towards the region of stability so 
that the triple point arises in the same manner. The regions of the different types of 
behaviour are shown in figure 8. The singular character of the boundary curves also 
manifestsitself at c = c,. It is worth noting that thesupplementary critical point, at which 
only spinodals terminate and which moves towards zero temperature for increasing W ,  
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Figure 9. Anomalous part C, of the specific heat versus the temperature i i n  the vicinity of 
the phase transitions indicated by the chain liner. The case of U = 6 ,  c = 0.5, @ = -0.75 is 
considered. 

doesnot arrive at zero temperature at finitevaluesof U’. This fact follows from the non- 
zeroslopeofaplotcorresponding to theexpressionon the right-handsideofrelationship 
(27) as a function of Z at finite values of 2. As a result, the triple point, if it appears, 
always occurs at a finite temperature there. 

5. Discussion 

Apart from the general analysis of the phase diagram, it seems to be instructive to 
consider the behaviour of the specific heat as a rather informative thermodynamic 
characteristic. According to (15) and (24)-(26), the derivative of 0 with respect to 
temperature is calculated. As a result, the anomalous part of the specific entropy 
corresponding to the phase transition in question can be written in the form 

S, = c In(cosh Y) + (1 - c) In(cosh Z)  + & c o y / f  - (Z  - Zo)[T(Z  - 2,) - p ] .  

On differentiating expression (33) with respect to temperature and making use of the 
value of dZ/dfderived from relationship (27), we obtain 

(33) 

In the case of the phase transition with the intermediate phase, the temperature behav- 
iour of C, is shown in figure 9. The mutual proximity of both the phase transitions, which 
isspecific in this particular case, manifestsitselfin the monotonicincrease of that branch 
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of the overall C, curve that is situated between the phase transitions. A minimum point 
of that branch exists but lies in the region of metastability. At higher U the minimum 
point of interest tends to the region of stability of the intermediate phase. As a result, 
we return to the usual singularities of the heat capacity, which are characterized by 
increasing magnitude on both sides of each phase transition point [3]. 

Note that thecommondeformationnatureofboth theenergiesof thedifferent states 
of a single inclusion and the energy of the indirect interaction via an elastic matrix may 
be regarded as a parametric feature of the above model. As a result, the typical energy 
parameter G of the system is determined by the set of elastic energies each of which is 
large enough in comparison with melting temperatures observed experimentally, The 
required smallness of the value of G compared with the elastic energies follows from the 
formoftheappropriatedependencegiven by(13)andisaresultofseveralcircumstances. 
First of all, the elasticity of an included material leading to an estimate of g, should 
obviously be less than the elasticity of the host matrix determined by the parameters 2. 
and p. The presence of a difference between the inverse values of the elastic moduli is 
one more origin for the reduction of the value of G. Finally, according to (4), the value 
ofg, itself is specified by the difference between the elastic parameters of an atom in the 
liquid and solid states. The latter is exclusively important inasmuch as a non-zero value 
of that difference turns on the present mechanism of melting. Hence, the non-zeroeffect 
can immediately be connected with the non-linear dependence of the energy of an atom 
in the molten state on the strong deformation, in accordance with the geometry of our 
model representation. 

To estimate the numerical values of the parameters involved above, we consider 
clusters composed of eight indium atoms and embedded in a zeolite matrix. Such a 
situation corresponds to experiment [l]. According to [3], at c = 0 we directly obtain 
G = 9 x lo-” J ,  i= 0.33 andp = -1.15. On setting E = 3 x N m-2 and U = 0.1 
for Young’s modulus and Poisson’s ratio of the elastic matrix, respectively, as well as 
U = 1.9 x 10~”m3[9],fromexpression(13)forG,wederiveg, = 2 x 10-lsJ.Thevalue 
ofg, can be connected with the relative atomic deformation 

U = 1 - (r1/rJ3 = 0.24 

where rl and rr are the model atomic radii in the liquid and solid states, respectively. We 
make use of the approximation 

gal - g,, = BU -+ Bu’ 

where the linear dependence of the atomic elasticity on the deformation is taken into 
account. On putting B = 1.1 x 10-18J as a value typical for indium [lo], we obtain l? = 
3.9 x IO-‘* J.  We can also write 

E, = Bu2/2 + Bu3/3 

and, therefore, according to (4), we have JI/G = 20. On the other hand, the values of 
the parameters mentioned above give rise to the relationship U = 0.7t. Onsubstituting 
the obtained estimates into the expression for p in set (28), at p = 0 we find 0 = 7 . 9 ,  
g,, = 2.6 X lo-’* J andg, = 3.1 X lo-’* J .  That value of Uspecifies the character of the 
expected peculiarities of the solution upon changing the concentration c in the case of 
the experimentalsystem[l]. As faras the physical natureof the valueofgasisconcerned, 
it would be associated with stressed states of solid inclusions 191, though the real origin 
of that stress may be the distortion of interatomic bonds due to the fact that the geometry 
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of the atomic configuration of a cluster differs drastically from the typical atomic con- 
figuration of bulk indium [lo]. 

It is worth pointing out the model peculiarities of the results obtained as far as the 
picture of melting is concerned. First of all, the configuration of the molten state can he 
somewhat different in real objects. Nevertheless, the large entropy effect typical for the 
experimental phase transition of melting [ll] agrees with the present model. This 
circumstance enables us to hope that adequate orders of magnitude of the involved 
parameters are obtained here. The statement that there is intimate elastic contact of an 
inclusion in the solid state with the surrounding matrix is essential here. Of course, the 
other situation when a solid inclusion exists freely in a cavity i s  also possible. The 
appropriate complication reduces to some increases in the values of 9rB and qS, as well 
as to the requirement that g,, = 0. The appearance of some threshold pressure pLh, at 
which elastic contact of an inclusion with the matrix is recovered, can be expected as 
well. Moreover, in this case the statistical contribution of the rotational degrees of 
freedom of a solid inclusion as a whole should also be taken into account. Strictly 
speaking, the latter contribution would already be calculated in the considered case, 
provided that cavities are perfectly spherical. However, the absence of this effect, at 
least in some real systems, seems to be plausible due to the fact that the cavities in 
question are not absolutely spherical. As a result, definite orientations of inclusions 
should be energetically favourable. 

Note that the effects of crystalline anisotropy and possible anisotropy of elastic 
deformation of the medium connected with the dynamical influence of many-body 
inclusions have been ignored because they do not change the obtained results quali- 
tatively. Indeed, the appropriatecontributionsofdipole andshort-range forcesare small 
compared with the discussed effect of the mean field [3, 121. 

The general picture of melting can also be more complicated owing to the possibility 
of the existence of some premelting states of inclusions [2]. As a result. the phase 
diagrams discussed here can be modified by features investigated in detail in 131. 

It is instructive to note that the present phenomenon yields the important pattern of 
thermodynamics with critical points, which are nor widespread in solids, The principal 
possibility of exploring the vicinities of the above critical points by means of changing 
the concentration of defective inclusions is confirmed by experimental results [13] (see 
also [14]). 

The analysis accomplished in the present paper shows that, even in the simplest case 
ofonly two kinds of inclusions, the task containsa lot of essential para meters,^^ that an 
experimentalcheckof the obtainedresultsover a wide range of valuesof the parameters 
seems to be quite difficult. Nevertheless, variation of the material of the inclusions can 
lead to some change in the value of 0. Variation of the concentration of defective 
inclusions can be achieved by the choice of the conditions under which the synthesis 
of given composites is performed. Appropriate thermodynamic investigations under 
pressure are desirable as well. As far as the possibility of a more complicated exper- 
imental situation dealing with a larger number of different types of inclusions is 
concerned, the results mentioned above could also be useful asgrounds for classification 
of miscellaneous types of thermodynamic behaviour. In particular, it is important for 
the understanding of complex eutectics typical of many-component composites. The 
structural picture of local melting proposed in the present paper is one more essential 
subject of interest. In our opinion, thorough experimental verification of the predicred 
thermodynamic behaviour would be extremely useful for developing representations of 
the phenomenon of melting as a whole. 
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Note that all the above calculations are based on the exactly soluble model, which 
enables us to perform them with sufficient accuracy. The principally novel types of 
phase diagram predicted here increase our knowledge about the possible character of 
isomorphic phase transitions. As far as the ferroelastic interaction leading to the col- 
lective effect of transformation of local states is concerned, that interaction seems to be 
universal in elasticsolids. Because of the latter, we believe that our resultsare applicable 
to a wide circle of phase transitions taking place in compounds that consist of several 
sorts of two-level systems. The numerical values describing the relations between the 
energies and degrees of degeneracy are to be corrected herein. 
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